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ABSTRACT
Finite element methods for nonlinear shell analysis are analyzed
using both the minimum potential energy and the mixed formulations.
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I. Introduction

In this paper we analyze finite element methods for nonlinear shell
analysis. We consider both the usual minimum potential energy formulation
and the mixed formulation using a modified form of the Hellinger-Reissner

stationary variational principle. These were considered in the engineering
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literature by [1] an \dditional references can also be found in these
papers. We shall use the nonlinear shallow shell theory for isotropic shells
and shall assume Kirchoff's hypothesis. The von Karman theory for plates is
obtained in the special case that the curvature is zero.

From the point of view of mathematical finite element analysis, a novel
part of nonlinear shell analysis is the fact that one may have non-unique
solutions. Typically one considers the load f to be given by Afo where
A 1is a load parameter, and then tracks successive solutions for different
(initially increasing) values of the load parameter. Consider in particular
the snap-through buckling of a shell (see p. 370-71 of [5]). As the load
parameter A 1is increased a critical load Acr which occurs at a limit point
is found. The load curve (see figure 1) would then show unloading and perhaps
reloading as other elements of resistance are mobilized by the finite deforma-
tions. If this resistance is adequate the load may eventually surpass Acr

provided that the material capacity is not exceeded. There is often a sudden
transition from the loading to the reloading branches of the curve at Acr
with a corresponding jump in D, (called snap-through buckling) where D is

some scalar representation of the displacement.
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Figure 1.

Our analysis proceeds by using Kantorovich's theorem at successive
load steps to prove local existence and uniqueness both of the exact solution
and of the finite element solution. We also show that the order of convergence
of the finite element approximations is optimal, i.e. the same order as is
obtained in the corresponding linear problems. Our analysis is carried out
for both the usual minimum potential energy formulation and the mixed formu-
lation using a modified form of the Hellinger-Reissner stationary variational
principle.

In our analysis the size of the load increments that can be taken and
still satisfy the conditions of Kantorovich's theorem for local existence
and uniqueness decreases with increasing displacement in the minimum potential
energy method but not in the mixed method. The apparent larger load increments
possible in the mixed method seem to be born out in fact in some numerical
experiments by the author on a simple one dimensional model problem.

For simplicity we consider the case of the clamped shell throughout.
Also, in order to make the equations somewhat simpler, we shall analyze the
shallow shell equations rather than the conventional shell equations. Our
analysis is no way restricted to shallow shells. In actual computations one
would approximate the curvatures kaS by piecewise polynomials, or use
numerical integration. In this paper we do not consider the effect of such
approximations, since the analysis of this effect does not differ from the

linear problem, see [3].




II. Minimum Potential Energy Formulation

Let  be the shell domain and let X = Hé(Q)xHé(Q)xH(Z)(Q). On X

we define the norm

2 _
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The shell problem can be expressed as: find u = (ul,uz,w) € X such that

1) S(u;f) = min S(v;f) = min[B(v,v) -~ 2(f,v)]
vEX ve X
where
,Bv,, av,, 8v3\ /BV_Y_ 8v3 8v3\
B(vv)-jA' ( + k v,+3 + k v, +%
oBYS Bx aB’3" 2 3x axs) (Z)x(s Y& 3 axY axd)
(2) Bzv 32v
+f G 3 3 ,
Q aByS 3x0"8x8 BxYax5
or equivalently as: find u&€ X such that
88 (u,v; f) =fA's 5 g+ kag¥ 2y +e 5"3)
0 apY ox 3x Y
o )
av du v
ow_ ow Y B N ow 3
(3) + 3 ( + k v)+(-———+k w) —
Bxa BxB 8x5 vé6'3 axa aB 3xY E)x6
+3 ow dw dw 3v3 + Bzw f
Bx 9x ax 9x UG.B’YS Bx Bx Bx Bx
B § Q
all v eX,




where kaB denotes the curvature and twist of the shell surface, and

and G& are coefficients. Here u, and u, are the in-plane

A'

aBys BYS 1

displacements and w 1is the transverse displacement. We use the con-
vention that the repeated subscripts o, B, Y, 6 indicate implied summa-
tions over these subscripts. Throughout we use Greek letters for indices
which take their values in the set {1, 2}.

For the finite element approximation to the solution u of (1),

choose finite dimensional subspaces V_C H%)(Q), Wh L aut Hg(ﬂ), with

h
X, =V, XW, and find gh = (ug, ug, wh)GE X, such that
%) s@™E) = min s

Ve x

or equivalently, find _1_1_h€ X.h such that
R h
(5) 8S(u,v ;) =0 , all v € Xh .

Our proofs of existence and uniqueness of solutions of (3) and (5) will
be based largely on the following lemma, which we state and prove for the

exact problem (3) but which applies equally to the approximate problem (5).

Lemma 1. Suppose there exists a solution u, to (3) for £ = Aofo

such that

2
(6) 625 (ug,v,w) > oy || vllZ

Then there exists a AX and an r such that for f = (l0+Ak)f0, (3) has a

unique solution u satisfying l.ﬁ r.

I u-uy |




Proof. The proof consists of verifying the hypotheses of Kantorovich's
theorem for the solution of equations in Banach spaces by Newton's method.

n
.Observe that 6S(uozg;(A0+AX)f0) = IQ Akfog and thus the solution u to
7) azs@o,g,x) = 85(ugvs OgHNEY all ve X

is bounded by

£
8 a1l Foll
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It is straightforward to verify using the inequalities

8,8,87 < |l & |l g, |l | g, ,
1; 1°2°=3 1 LA(Q) 2 LA(Q) 3 LZ(Q)
8.8,8.8, < |l gl I e, |l | &,ll | g, ,
J; 1°2°3%4 1 LA(Q) 2 LQ(Q) 3 LA(Q) 4 LA(Q)
. 4 1
and the embedding L () C H (), that
@ 1670w, 0.9 - 650,80 < Ellvwl el IS
X X X

for all v,,v, € S = {v: ”-XiEO ”x < 2a0}, where M depends linearly
on || (v3)1 + (VS)ZlIX' By Kantorovich's theorem ([7], Chapter 18, see also

(41, p. 143-150), if

a gl <
0
then there exists a unique solution u to (3) with || 2720|| < r vwhere
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As stated above, the same proof goes through in the case of the approximate

problem (5). In fact, the bounds (8) and (9) are clearly independent of h,
once we show, as we do below, that the bound (6) can be chosen independent of
h. Then both AAX and r will be independent of h.

We wish to generate a sequence of loads Ai and corresponding solutions
u; and 52 to (3) and (5) respectively by repeated application of Lemma 1.
Suppose we let AO = 0. Clearly for f = 0 both (3) and (5) have the unique

= 0. 1In addition, the assumption (6) is clearly satisfied

Fo

solution u
-0

since 628(0,2, ) 1is the bilinear form associated with the linear shell

< |

problem, for which the ellipticity assumption (6) has been shown to hold in

[2]. Thus by Lemma 1 there is a A, = AO + Akl for which we are guaranteed

1
unique solutions u, and Eg' It is immediate by writing 528(3,ﬁ}§) as
628(3012,2) - (628(u ,9,9) - 623(1»&;2)) and using (9) that there exists

1 ZS

an r' and an o' such that &%S(v,%,9) Z_a'”i}|2 for all v satisfying

depends on Thus by making the r in

i

SIXTEO I“{ < r', where r I EOIIX'
Lemma 1 somewhat smaller if necessary (by over-estimating the constant M in
(9)) one can generate a sequence of loads Aifo converging to Acrf and

corresponding solutions u, to (3) by repeated application of Lemma 1.

. . h
We show below that if the finite element approximation u, to

u.
—i
satisfies
(10) Ju, -o® || < cnf
X
. h
h .
then the finite element approximation u i+l to 4.4 satisfies

h k .
||5i+1 - Ei+ll|X < C'h’, where both C and C' are independent of h.

Using (10), we can choose the e, in Lemma 1 to apply to both the exact
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problem (3) and the approximate problem (5), thus insuring that a single

A, and r can be chosen in Lemma 1 for both u and its finite element

i i+l

approximation uh
PP Zit+l

The method of analysis presented here parallels'closely the procedure
one would use to actually compute approximate solutions. To continue follow-
ing the load curve beyond the critical load, however, a slightly different
strategy 1s needed near Acr' After finding Acr with desired accuracy
(when the size of the load increments that can be taken becomes small enough),
instead of using the solution at the previous load step as the starting value,
one instead perturbs the current solution and reduces the load.

Suppose that this starting value is Eﬁ. Then Gh is the finite element
solution for some load g, if there exists A such that [| g-Af is

Ollrzln\

o \34y

small enough, then Lemma 1 can be used to find solutions to both (3) and (5)
for the load Xfo. This strategy may be too simplistic in more general situ-
ations, since it assumes that the direction of the load curve is known, but
it seems adequate for the present analysis. A more sophisticated strategy
is given in [1], when no presumption is made concerning the direction of the
load curve.

We now proceed to obtain error bounds. We assume that the finite element
subspaces have the following approximation properties. There is some
q>3 such that if ue EH@ x EI@) N (H@ x HJ(®) and

weHR (@ N Hg(ﬂ), 3 <s < q, then there is some §P € V. such that

h
1) foi®ll , | < a2
H (Q)xH (R2)
and there is some WFe W such that
~h 1,52
(12) w-w"1l , < C'h
H™(Q)




where C and C' are independent of h.

Theorem 1. Let the finite element subpaces v, © Hé(Q) and

V%lc Hg(ﬂ) satisfy (11) and (12) respectively. Suppose u, and 2:

are solutions to (3) and (5) respectively for load f = Kifo such that

(6) is satisfied. Then there exist Ai+l = Ai + Aki and r such that

. . . h .
there exist unique solutions u. ., and u 141t (3) and (5) respectively
for load f = Ai+1f0’ with

h h
(13) ] Hi-giﬂllx < T, |uj-u Il < r
Furthermore, if
(14) I u.—u? I < cnS7?
-1 =i -
X
where C 1is independent of h,
h v, 5=2
(15) [ PEUE I | B M
where C' 1is independent of h.
R . h . .

Proof: The existence and uniqueness of Y and v satisfying
(13) follows from Lemma 1 and our subsequent discussion. Let §2+l and E:
satisfy (11) and (12) for Uiy and u, respectively. Let
~h h h ,.h ~h
u = Ei+l-2i_(gi+1—91)' We have the equality




s(u,,a" 8" + (6sql, 4"

h .h
i+l - 05(uy,u5A )

i+1f0)

~h  .h, ~h ah 2 b .h
(16) - (88(uy,1,8730 fy) - 8s(u,,8 ,kifo))— 678 (u,,8",4 )}

h

p— 0 Ah ~h Ah
= 05(u;,,8

. - ~h h . oY
sAgy1f) = 8S(u T R g = (65(U 5875, Fg) - 85(u,85%,£4))

The right side of (16) can be bounded by

a”n kn2 | &P |
X

We show that the left side of (16) can be bounded from below by

2
(18) (a=r-8'c™) || & ||
X

where B8 and B' are constants independent of ao,h, and r, and Qg is
the constant in the inequality (6). As mentioned before, r can be taken
small enough that OLO—Br--B'r2 > 0. Once we have established the inequality
(18), the bound (15) follows from the triangle inequality and (14).

The appearance of -GZS(EE,EP,Ep) in the brackets on the left side of
(16) serves to cancel out all of the linear terms in the previous four terms.

There are three nonlinear terms to be bounded, corresponding to the three

nonlinear terms in (3). Corresponding to the first, we have



h  h h  h _<hy . ~h o
L2V 3wy ) ) 8(‘”1+1 Vi) 3G )
I L 9x ox

awg o ofi, h
'ES&;% lEm e

8
(19)

b -h  -h .h
a(w ) a(w, ,~w,) a4

=f%gw( 8+11Jr §+1 1)'('§l+k6€’h>

0 % X Xa x5 Y

~h  -h ~h h .

9w v ) 3w -w)) Efx Ah

+ 3 % "\ox, o kys¥

*g o §

Using the embedding L4(Q)(: Hl(Q), the first term on the right side of (19)
can be bounded by Kr“ ah ”2 » while the second term on the right hand side
of (19) can be bounded by K’ h 2” H{X, and moved over to the right side of
(16). The second nonlinear term in (3) can be handled in the same way as (19).

Corresponding to the last nonlinear term in (3), we have




h  hy.h h h h h . h oh\
1 8(“’i+1""i)(a“’i+1 W41 ‘i (3"’1+1 dwy N Wi Oy ) R duy dwy )
Q 3 9x BgY BxY axB 9x axY

~h ~h ~h ~h ~ ~h ~h ~h ~h ~~h
3(wi+l-wi) 8wi+1 8wi+1 .3 (8wi+l Bwi . 8wi+l Bwi ) . 8wi Bwi
Bxa Bxe 90X axB BxY BxY BXB BxB BxY‘
h h
awi Bwi Bﬁh a,Cn
BXB 9x_ 9% Bx(S
(..n {5 -w?) 3(wh —w)
_ i_aw k YTi4 i +
[Q 3i3xa BxB BxY
(20)
~h ~h h hy ~.~h
‘3 { 8("t~;l~.~1""i) 3wy vy) wygmwy) Iy w \
\ axe axY 3xY de
~h ~h ~h ~h, . ~h
. 3(W1+l w.) 3(w +1-Wi) L3 Bﬁh (B(W v ) N 8(wi+l-wi)) ow
ox8 SxY 2 Sxa axs oxB o0x
~h ~h ~h ~h ~h ~h
9 (Wi+l—wi) 3 (wi+1—wi) a(wi—wi)
+
ox ox 9x
a 8 Y
~h ~h ~h h ~h h
. 3wy y=wy) 3wy wy) dWitwy) | 5ph
8xa BxB axY axd

It is clear that the right side of (20) can be bounded similarly to (19)

except that the constants will depend on || W

i , as in our proof of

B2 (@)
existence and uniqueness.

Near the critical load, we still obtain optimal error bounds if we

replace 32 by Eﬁ as above and assume the bound

[ wnt || < o2,
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where ;, is the exact solution to (3) for the load g. Such an assump-

tion is justifiable if the displacement u occurs prior to the critical

load for the load distribution g.

III. Mixed Formulation

Let @l@)3 = 12 x 12 x L2(@) with norm

12t

o | - iy,
aon? L2

Let X = X X (LZ(Q))3 X (LZ(Q))3. on X we define the norm

Holl o = (Jult®+lIn]2 + a2 X
X X a3 w?w@)>

where ¢ = (u, N, M), with N, M, 2x2 symmetric tensors, which represent

the direct stresses and the bending moments respectively. The mixed formu-

lation of the shell problem may be expressed as: find ¢ = (u, N, M) € X

such that
R(¢;f) = min R(Y;£)
‘QGiX
= ‘/Q- [‘*AasysNas“ya"l‘casya"asnya
(21) du
B ow ow
+ (—a-}—{; + kQBW + %s'%—ax—s) NQB
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or equivalently as: find ¢ € ﬁ such that

6R(¢,¢;£) = /{; AygysNop yG aBYS lag y(‘S

dug _ (aGB
+ -a—}g‘l'kaBWNaB +Na8—a;—+k B )

o

oW oW = ow  Aw ow oW
(22) + 3 — N, + %N ( + )
axa BXB of aB Bxa 3x8 E)x8 Bxa
'Azw ﬁ M 32';’ =0 ,
BxaaxB B aB ox BxB -

For the finite element approximation to_the solution ¢ of (22), choose

finite dimensional subspaces S;C (LZ(Q))3 and S;C (LZ(Q))3, along with

. . s _ % . ohooh ,
Vh and Wh of the previous section. Let Xh = XhXSNXSM and find

Q = (u Nh 1‘1'h)E X such that

(23) RGP E) = min RGOE)
h A
" R,
. h 2h
or equivalently : find ¢ € X  such that
h "’h h N
(24) SR($",3 ;£) = 0 . all ¢"€ R .

We assume the Sg and S; have the following approximation properties.
If N€ (HS—Z(Q))Z, ME (HS—Z(Q))Z, then there is some _ff’c Sg, &hc S;

such that

-13-




-h -2
| °

(25) Il N- Ch ,

A

w?@))3

(26) | M- || chS2

| A

a@n’

The same analysis of existence and uniqueness goes through for the
mixed method as for the minimum energy method in the previous section, once

we prove the following lemma. Let PN denote the orthogonal projection of

@w?()3 into sg.

Lemma 2. Suppose that the subspaces S; and S; satisfy the

following: all vectors (aug/axl,aug/axz,%(Bug/axl + aug/axz)) are contained

h h h h h
. e .
in SN for all (ul,uz) V' and all vectors (wxx’wyy’wxy) are contained
in S; for all w' € W'. Then
2 ~ ~ o
(27) .sup 8°R(0,0,%) > o fle ll. 2 ll, » a1 ¢eXx,
and for h small enough
~ h ~

(28) sup 6°R(0,¢",0M) >a, " e, an e X

I\h A X X

s ex
where ao is a constant independent of h.
Proof. Since the supremum in (29) is only taken over ih’ (26) does not

follow from (27). 1In fact, it is necessary to restrict the subspaces S;

and S; in order to prove (28). We shall prove (28). It will be clear

that (27) can be proved in the same manner.

—14~




We take N to be the vector (Nll,sz,le) and M to be the vector
(Mll’M22’M12)' 62R(0,Q,§) can be expressed in matrix form as
62R(0’§h,§b) - (gb’Agb) _ (!P5G&h) + (Tlﬂh’ﬁﬁ)
(29)

h h h h .
where T,u has components BuB/Bxa + kan and T,w  1is the vector

(wh ,wh ,wh ). Both the matrices A and G are positive definite. Now
XX yy" Xy
choose
R s S WL N & = 20"
ﬁh - Mh _ G—l(Tzwh)
, ~h ch , h h .
It is clear that N and M  are contained in SN and SM respectively,

and that there exists a constant C such that

1380 < clleh

X X
We obtain
a,am) + o6 oM + (10, a7l u™
h -1. h h -1 h h
(30) + (T2w ,G Tzw ) + (Tlg - (PN(kan )—kaw ))

> k) |8l Nel .

Here we have used the approximation property of S; and the ellipticity property

froll > kfull

X X
proved in [2]. This establishes (28). The inequality (27) can be proved in
the same way.

-15-




Theorem 2. Let the finite element subspaces th: Hé(Q) and

Wy

SEC(LZ(Q))“Q‘ and S

c HS(Q) satisfy (11) and (12) respectively. Let the subspaces

h
M

along with the hypotheses of Lemma 2. If Qi and 92 are solutions to

C:(LZ(Q))3 satisfy (25) and (26) respectively

(22) and (24) respectively for the load £ = AifO

are satisfied, then there exist Ai+1 = Ai + Aki and r such that there

such that (27) and (28)

exist unique solutions 9i+l and 92+J_to (22) and (24) respectively for

the load f = Ai+lf0’ with

h h
(31) lo0sll <t leye gl < ¢ .
X X

Furthermore, if

h -2
(32) ” gli_gi” n < Khs ’
X
where K is independent of h, then
Lh 1.5-2
(33) Mogyqthyy = ! ,
where K' is independent of h.
; . h
Proof. The proof of existence and uniqueness of 9i+1 and $i+l

satisfying (31) follows in the same way as for the minimum energy formulation
except that the constant M in (9), and thus also r, is independent of

| wii 9 - The bound (33) can be established in the same manner as in the
H™ ()

previous section. For the mixed method all estimates on the nonlinear terms

are similar to (19). No estimates like (20) enter.

IV. Concluding Remarks

If one assumes Kirchhoff's hypothesis, the weak form of the shell equa-

. . 1
tions invclves second partiales of the transverse displacement w. Thus C
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finite elements must be used to approximate w. For linear problems,

a major reason for considering mixed methods is to allow, by integration
by parts, the use of Co—finite elements, as in [6] and [8]. 1In this
paper we did not consider this possibility because results of the type
obtained here are not straight-forward to obtain. One difficulty is
that the system is no longer quasi-linear, and the bound (9) does not
hold. Thus Kantorovich's theorem can not be applied in a straight-
forward way. If one does not assume Kirchhoff's hypothesis, one also
has only first partials of w appearing, but with additional variables,
the transverse shear stresses Qa and the rotations ¢a' This system
is also not quasi-linear.

It is the author's opinion that the fact that the size of the load
steps that can be taken is independent of the size of w for the mixed
method but not for the minimum potential energy method is significant.
One does, however.have a system with many more independent variables
which is not positive definite. When this larger system has been solved,
however, one has the stresses and bending moments explicitly, and doesn't
need to obtain them by differentiation of the displacements, a non-negligible

cost.

=17~
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